Львів
C
» » Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи

Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи

Термодинамика - это самостоятельный раздел физики, который изучает процессы перехода между состояниями системы, оперируя при этом макроскопическими характеристиками. Одним из важных объектов изучения термодинамики является идеальный газ. Данная статья посвящена рассмотрению концепции идеального газа и единицам измерения универсальной газовой постоянной.

Идеальный газ

Газовое агрегатное состояние материи характеризуется хаотичным расположением частиц, расстояние между которыми значительно больше их размеров. Эти частицы находятся в постоянном движении, поэтому газ не сохраняет свою форму и свой объем.
Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи
Идеальным газом называется любое вещество, размерами частиц которого и взаимодействиями между которыми можно пренебречь. В рамках концепции идеального газа считают, что любые столкновения частиц со стенками сосуда носят абсолютно упругий характер. Средняя кинетическая энергия частиц однозначно определяет температуру идеального газа.


Большинство реальных газов, которые находятся при не слишком высоких давлениях и не слишком низких температурах, можно считать с высокой точностью идеальными.

Универсальное уравнение состояния

Так называют уравнение, которое объединяет в рамках одного выражения все важные термодинамические параметры идеальной газовой системы. Запишем его: P*V = n*R*T. Здесь P и V - давление в паскалях и объем в метрах кубических, n и T - количество вещества в молях и температура системы в Кельвинах. Это равенство также называется уравнением или законом Клапейрона-Менделеева в честь французского физика и инженера и русского химика XIX века, которые вывели это уравнение из накопленного предыдущими поколениями ученых экспериментального опыта.


Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи
Универсальное уравнение состояния системы позволяет получить любой газовый закон. Например, закон Гей-Люссака следует из него непосредственно, если положить постоянным объем во время термодинамического процесса.Мы выше расшифровали 4 из 5 обозначений, присутствующих в формуле. Пятым является коэффициент R. Он называется универсальной газовой постоянной. Единицей измерения в СИ для него является джоуль на моль-кельвин (Дж/(моль*К)). Что это за величина, рассмотрим подробнее дальше в статье.

Постоянная R в физике

Выше мы увидели, что это некоторый коэффициент пропорциональности между давлением, объемом, температурой и количеством вещества. Единицей измерения универсальной газовой постоянной в системе СИ является Дж/(моль*К). Ее значение с точностью до трех знаков после запятой равно 8,314. Это число означает, что один моль идеального газа, будучи нагретым на 1 кельвин, в процессе своего расширения совершит работу 8,314 джоуля.Постоянную R можно также интерпретировать несколько иначе: если затратить на нагрев одного моль газа энергию в 8,314 джоуля, то его температура возрастет на 1 кельвин. Иными словами, R характеризует связь между энергией и температурой для фиксированного количества вещества.Заметим, что величина R в физике не является базовой (фундаментальной) константой такой, как скорость света или постоянная Планка. Поэтому с помощью выбора соответствующей температурной шкалы и количества частиц в системе можно добиться того, что R будет равно 1.
Впервые постоянную R в физику ввел Д. И. Менделеев, заменив ею в универсальном уравнении состояния Клапейрона ряд других констант. Отметим, что хотя величина R введена для газов, в современной физике она используется также в уравнениях Дюлонга и Пти, Клаузиуса-Моссотти, Нернста и в некоторых других.
Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи

Постоянные kB и R

Люди, которые знакомы с физикой, могли заметить, что существует еще одна постоянная величина, которая во всех физических уравнениях выступает в качестве переводного коэффициента между энергией и температурой. Эта величина называется постоянной Больцмана (kB). Она равна 1,38*10-23 Дж/К. Очевидно, что должна существовать математическая связь между kB и R. Такая связь действительно существует, она имеет следующий вид: R = kB*NA. Здесь NA - это огромное число, которое называется числом Авогадро. Равно оно 6,02*1023. Если количество частиц системы равно NA, то говорят, что система содержит 1 моль вещества.Таким образом, постоянная Больцмана и универсальная газовая постоянная, по сути, это один и тот же переводной коэффициент между температурой и энергией с той лишь разницей, что kB используется для микроскопических процессов, а R - для макроскопических.

Решение задачи

После знакомства с единицами измерения универсальной газовой постоянной предлагается получить их из универсального уравнения для идеального газа, которое было приведено в статье. Ниже на рисунке изображено это уравнение.
Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи
Выразим из него величину R, получаем: R = P*V/(n*T). Теперь подставим для каждой физической величины соответствующую единицу измерения и упростим полученное выражение: [R] = [Па*м3/(моль*К)] = [Н/м2*м3/(моль*К)] = [Н*м/(моль*К)] = [Дж/(моль*К)]. Как видно, при получении единиц измерения для R мы упрощали только единицы измерения числителя. Сначала была использована формула для давления, а затем произведение единиц силы на единицы расстояния были преобразованы в единицы работы.