Потреба в рахунку
З давнини люди мали потребу в рахунку, тобто інтуїтивно усвідомлювали, що потрібно якимось чином висловити кількісне бачення речей і подій. Мозок підказував, що необхідно використовувати предмети для рахунку. Найбільш зручними завжди були пальці на руках, і це зрозуміло, адже вони завжди в наявності (за рідкісними винятками).От і доводилося древнім представникам роду людського загинати пальці в прямому сенсі - позначати кількість убитих мамонтів, наприклад. Назв в таких елементів рахунки ще не було, а лише візуальна картинка, зіставлення.
Сучасні позиційні системи числення
Система числення - це метод (спосіб) преставлення кількісних значень величин за допомогою певних знаків (символів або цифр). Необхідно розуміти, що таке позиційні і непозиционность в рахунку, перш ніж наводити приклади непозиционних систем числення. Позиційних систем числення безліч. Зараз використовують у різних областях знань наступні: двійкову (включає тільки дві значущі елементи: 0 і 1), шестеричную (кількість знаків - 6), вісімкову (знаків - 8), двенадцатеричную (дванадцять знаків), шістнадцяткову (включає шістнадцять знаків). Причому кожен ряд знаків в системах починається з нуля. Сучасні комп'ютерні технології засновані на використанні двійкових кодів - двійкової позиційної системи числення.Десяткова система числення
Позиционностью вважається наявність в різній ступені значимих позицій, на яких розташовуються знаки числа. Найкраще це можна продемонструвати на прикладі десяткової системи числення. Адже саме нею ми звикли користуватися з самого дитинства. Знаків у цій системі десять: 012 345 678 9. Візьмемо число 327. У ньому є три знаки: 327. Кожен з них розташований на своїй позиції (місці). Сімка займає позицію, відведену під одиничні значення (одиниці), двійка - десятки, а трійка - сотні. Так як число тризначне, отже, позицій у ньому всього три. Виходячи з вищесказаного, таке тризначне десяткове число можна описати наступним чином: три сотні, два десятка і сім одиниць. Причому значимість (важливість) позицій відраховується зліва направо, від слабкої позиції (одиниці) до більш сильної (сотні). Нам дуже зручно себе почувати в десятковій позиційній системі числення. У нас на руках десять пальців на ногах - також. П'ять плюс п'ять - так, завдяки пальцях, ми з дитинства легко уявляємо собі десяток. Ось чому буває легко дітям вчити таблицю множення на п'ять, на десять. А ще так просто навчитися рахувати грошові банкноти, які найчастіше кратні (тобто діляться без залишку) на п'ять, на десять.Інші позиційні системи числення
На подив багатьох, слід сказати, що не тільки в десятковій системі рахунки наш мозок звик робити якісь розрахунки. Досі людство користується шестеричной і двенадцатирічня системами числення. Тобто в такій системі існує тільки шість знаків (шестеричной): 012 345. У двенадцатирічня їх дванадцять: 012 345 678 9 А, В, де А - позначає число 10 У - число 11 (оскільки знак повинен бути один). Посудіть самі. Ми вважаємо час шістками, чи не так? Одна година - шістдесят хвилин (шість десятків), одну добу - це двадцять чотири години (два рази по дванадцять), рік - дванадцять місяців і так далі Всі тимчасові інтервали легко укладаються у шести - і двенадцатеричние ряди. Але ми настільки до цього звикли, що навіть не замислюємося при відліку часу.Непозиционние системи числення. Унарная
Необхідно визначитися в тому, що це таке - непозиционная система числення. Це така знакова система, в якій немає позицій для знаків числа, або принцип "прочитання" числа від позиції не залежить. У ній також існують свої правила запису або обчислень. Наведемо приклади непозиционних систем числення. Повернемося до старовини. Люди потребували рахунку і придумали найбільш просте винахід - вузлики. Непозиционной системою числення є вузликова. Один предмет (мішок рису, бик, стіг сіна тощо) відраховували, наприклад, при купівлі або продажу та зав'язували вузлик на мотузочці. У підсумку на мотузці виходило стільки вузликів, скільки мішків рису куплено (як приклад). Але також це могли бути насічки на дерев'яній паличці, на кам'яній плиті і т. д. Така система числення стала називатися вузликової. У неї існує друга назва - унарная, або одинична ("уно" на латині означає "один"). Стає очевидним, що дана система числення - непозиционная. Адже про яких позиціях може йти мова, коли вона (позиція) всього одна! Як не дивно, в деяких куточках Землі досі в ходу унарная непозиционная система числення.Також до непозиционним систем числення відносять:
Римська система числення
Стародавня римська імперія, а також її наука, була дуже прогресивною. Римляни дали світу безліч корисних винаходів науки і мистецтва, в тому числі свою систему рахунки. Дві сотні років тому римські числа використовували для позначення сум в ділових документах (таким чином уникали підробки). Римська нумерація - приклад непозиционной системи числення, вона відома нам нині. Також римська система активно використовується, але не для математичних розрахунків, а для вузько спрямованих дій. Наприклад, з допомогою римських чисел прийнято називати історичні дати, століття, номери томів, розділів і глав у книжкових виданнях. Часто використовують римські знаки для оформлення циферблатів годин. А також римська нумерація є прикладом непозиционной системи числення. Римляни позначали цифри літерами латиниці. Причому числа вони записували за певними правилами. Існує перелік ключових символів в римській системі числення, з допомогою них записувалися всі числа без винятку. Позначення чисел римської системи численняЧисло в десятковій системі числення)
Римське число (буква латинського алфавіту)
1
I
5
V
10
X
50
L
100
C
500
D
1000
M